Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide.
نویسندگان
چکیده
BACKGROUND Excitotoxicity and excess generation of nitric oxide (NO) are believed to be fundamental mechanisms in many acute and chronic neurodegenerative disorders. Disturbance of Ca2+ homeostasis and protein nitration/nitrosylation are key features in such conditions. Recently, a family of proteases collectively known as caspases has been implicated as common executor of a variety of death signals. In addition, overactivation of poly-(ADP-ribose) polymerase (PARP) has been observed in neuronal excitotoxicity. We therefore designed this study to investigate whether triggering of caspase activity and/or activation of PARP played a role in cerebellar granule cell (CGC) apoptosis elicited by peroxynitrite (ONOO-) or NO donors. MATERIALS AND METHODS CGC from wild-type or PARP -/- mice were exposed to various nitric oxide donors. Caspase activation and its implications for membrane alterations, Ca2+ homeostasis, intracellular proteolysis, chromatin degradation, and cell death were investigated. RESULTS CGC exposed to NO donors undergo apoptosis, which is mediated by excess synaptic release of excitotoxic mediators. This excitotoxic mechanism differs from direct NO toxicity in some other neuronal populations and does not involve PARP activation. Inhibition of caspases with different peptide substrates prevented cell death and the related features, including intracellular proteolysis, chromatin breakdown, and translocation of phosphatidylserine to the outer surface of the cell membrane. Increased Ca2+ influx following N-methyl-D-aspartate (NMDA) receptor (NMDA-R) activation was not inhibited by caspase inhibitors. CONCLUSIONS In CGC, NO donors elicit apoptosis by a mechanism involving excitotoxic mediators, Ca2+ overload, and subsequent activation of caspases.
منابع مشابه
Propolis ameliorates tumor nerosis factor-α, nitric oxide levels, caspase-3 and nitric oxide synthase activities in kainic acid mediated excitotoxicity in rat brain.
BACKGROUND Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (C...
متن کاملPKCa Agonists Enhance the Protective Effect of Hyaluronic Acid on Nitric Oxide-Induced Apoptosis of Articular Chondrocytes in Vitro
Objective(s): Protein kinase C (PKCα) is involved in modulating articular chondrocytes apoptosis induced by nitric oxide (NO). Hyaluronic acid (HA) inhibits nitric oxide-induced apoptosis of articular chondrocytes by protecting PKCα, but the mechanism remains unclear. The present study was performed to investigate the effects and mechanisms of PKCα regulate protective effect of hya...
متن کاملSchizandrin protects primary cultures of rat cortical cells from glutamate-induced excitotoxicity.
The neuroprotective effect of schizandrin on the glutamate (Glu)-induced neuronal excitotoxicity and its potential mechanisms were investigated using primary cultures of rat cortical cells. After exposure of primary cultures of rat cortical cells to 10 microM Glu for 24 h, cortical cell cultures exhibited remarkable apoptotic death. Pretreatment of the cortical cell cultures with schizandrin (1...
متن کاملCalpain inhibitors prevent nitric oxide-triggered excitotoxic apoptosis.
The pathogenesis of some neurodegenerative disorders has been linked to excitotoxicity, excess generation of nitric oxide (NO) and apoptosis. Here, we used a model of NO-triggered neuronal apoptosis that was strictly dependent on autocrine NMDA receptor (NMDA-R) activation and intracellular Ca2+ increase. We investigated the efficiency and potentially beneficial effects of calpain inhibition. T...
متن کاملAkt as a mediator of cell death.
Protein kinase B/Akt possesses prosurvival and antiapoptotic activities and is involved in growth factor-mediated neuronal protection. In this study we establish Akt deactivation as a causal mediator of cell death. Akt deactivation occurs in multiple models of cell death including N-methyl-d-aspartate excitotoxicity, vascular stroke, and nitric oxide (NO)- and hydrogen peroxide (H2O2)-elicited ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine
دوره 3 11 شماره
صفحات -
تاریخ انتشار 1997